Q 4 A body of mass 0.5 kg travels in a straight line with velocity $v = ax^{\frac{3}{2}}$ where $a = 5m^{\frac{-1}{2}}$ s⁻¹. What is the work done by the net force during its displacement from x = 0 to x = 2 m?

Sol. Mass of the body, m = 0.5 kg

The velocity of the body is governed by the equation, $v=ax^{\frac{3}{2}}$ where Initial velocity of the body, u (at x = 0) = 0

Final velocity of the body, v (at x = 2 m) = $5m^{\frac{-1}{2}}s^{-1} \times (2m)^{\frac{3}{2}} = 10\sqrt{2} \text{m/s}$ Work done, W = Change in kinetic energy

=
$$\frac{1}{2}$$
m (v² - u²)
= $\frac{1}{2}$ × 0.5 [(($10\sqrt{2}$)² - (0)²]
= $\frac{1}{2}$ × 0.5 × 10 × 10 × 2
= 50 J

Hence, the work done by the force during displacement is 50 J.